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Theoretical Basis of Systems Engineering
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Understanding Systems Engineering

 Definition – System Engineering is the engineering discipline which 
integrates the system functions, system environment, and the 
engineering disciplines necessary to produce and/or operate an 
elegant system.

• Elegant System - A system that is robust in application, fully meeting specified 
and adumbrated intent, is well structured, and is graceful in operation.
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 Primary Focus
• System Design and Integration

‒ Identify system couplings and interactions
‒ Identify system uncertainties and 

sensitivities
‒ Identify emergent properties
‒Manage the effectiveness of the system

• Engineering Discipline Integration
‒Manage flow of information for system 

development and/or operations
‒Maintain system activities within budget 

and schedule

 Supporting Activities
• Process application and execution

‒Processes organize the engineering



Systems Engineering Postulates

 Postulate 1: Systems engineering is system specific and context dependent in 
application

 Postulate 2: The Systems Engineering domain consists of subsystems, their 
interactions among themselves, and their interactions with the system 
environment

 Postulate 3: The function of Systems Engineering is to integrate engineering 
disciplines in an elegant manner

 Postulate 4: Systems engineering influences and is influenced by organizational 
structure and culture

 Postulate 5: Systems engineering influences and is influenced by budget, 
schedule, policy, and law

 Postulate 6: Systems engineering spans the entire system life-cycle

 Postulate 7: Understanding of the system evolves as the system development or 
operation progresses

 Postulate 7 Corollary:  Understanding of the system degrades during operations 
if system understanding is not maintained.
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Systems Engineering Principles

 Principle 1: Systems engineering integrates the system and the disciplines 
considering the budget and schedule constraints

 Principle 2: Complex Systems build Complex Systems

 Principle 3: A focus of systems engineering during the development phase 
is a progressively deeper understanding of the interactions, sensitivities, 
and behaviors of the system, stakeholder needs, and its operational 
environment
• Sub-Principle 3(a): Mission context is defined based on understanding of the stakeholder 

needs and constraints
• Sub-Principle 3(b): Requirements and models reflect the understanding of the system
• Sub-Principle 3(c): Requirements are specific, agreed to preferences by the developing 

organization
• Sub-Principle 3(d): Requirements and design are progressively elaborated as the 

development progresses
• Sub-Principle 3(e): Hierarchical structures are not sufficient to fully model system 

interactions and couplings
• Sub-Principle 3(f): A Product Breakdown Structure (PBS) provides a structure to integrate 

cost and schedule with system functions
• Sub-Principle 3(g): As the system progresses through development, a deeper understanding 

of the organizational relationships needed to develop the system are gained.
• Sub-Principle 3(h):  Systems engineering achieves an understanding of the system’s value 

to the system stakeholders
• Sub-Principle 3(i): Systems engineering seeks a best balance of functions and interactions 

within the system budget, schedule, technical, and other expectations and constraints. 
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Systems Engineering Principles

 Principle 4: Systems engineering has a critical role through the entire 
system life-cycle
• Sub-Principle 4(a): Systems engineering obtains an understanding of the system
• Sub-Principle 4(b): Systems engineering defines the mission context (system application)
• Sub-Principle 4(c): Systems engineering models the system
• Sub-Principle 4(d): Systems engineering designs and analyzes the system
• Sub-Principle 4(e): Systems engineering tests the system
• Sub-Principle 4(f): Systems engineering has an essential role in the assembly and 

manufacturing of the system
• Sub-Principle 4(g):  Systems engineering has an essential role during operations, 

maintenance, and decommissioning

 Principle 5: Systems engineering is based on a middle range set of theories
• Sub-Principle 5(a): Systems engineering has a physical/logical basis specific to the system
• Sub-Principle 5(b): Systems engineering has a mathematical basis
• Sub-Principle 5(c): Systems engineering has a sociological basis specific to the 

organization(s)

 Principle 6: Systems engineering maps and manages the discipline 
interactions within the organization 

 Principle 7: Decision quality depends on system knowledge present in the 
decision-making process

 Principle 8: Both Policy and Law must be properly understood to not overly 
constrain or under constrain the system implementation
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Systems Engineering Principles

 Principle 9: Systems engineering decisions are made under 
uncertainty accounting for risk

 Principle 10: Verification is a demonstrated understanding of all the 
system functions and interactions in the operational environment

 Principle 11:  Validation is a demonstrated understanding of the 
system’s value to the system stakeholders

 Principle 12:  Systems engineering solutions are constrained based 
on the decision timeframe for the system need

 Principle 13: Stakeholder expectations change with advancement in 
technology and understanding of system application.

 Principle 14: The real physical system is the perfect model of the 
system
• Kullback-Liebler Information shows the actual system is the ideal information 
representation of the system

‒𝐼 𝑓, 𝑔 = 𝑓 𝑥 log 𝑓(𝑥) 𝑑𝑥 − 𝑓 𝑥 log 𝑔(𝑥ȁ𝜃) 𝑑𝑥 = 0
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System Engineering Hypotheses

 Hypothesis 1: If a solution exists for a specific context, then there 

exists at least one ideal Systems Engineering solution for that 

specific context
• Hamilton’s Principle shows this for a physical system

𝑡1‒
𝑡2 𝛿𝑇 − 𝛿𝑉 + 𝛿𝑊 𝑑𝑡 = 0

 Hypothesis 2: System complexity is greater than or equal to the 

ideal system complexity necessary to fulfill all system outputs

 Hypothesis 3: Key Stakeholders preferences can be accurately 

represented mathematically
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Mathematical Basis of Systems Engineering: 
Mathematical Category Theory
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System Representations

 Systems are comprised of 2 basic structures
• Postulate 2: The Systems Engineering domain consists of subsystems, their 
interactions among themselves, and their interactions with the system 
environment
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Major Components of the NASA Space

Launch System (SLS)

• Components

• Relationships among 

components
‒Physical

‒Logical

• Relationships with the 

environment
‒Physical



Rocket Physical and Logical Relationships
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Rocket as a Mathematical Category
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Mathematical Category

 A Mathematical Category consists of
• Objects (i.e., system components): a,b,c,…

• Arrows (i.e., system relationships between components and the 

environment): f,g,…

 A Mathematical Category has properties
• Domain/Codomain

‒f: a    b where a is the domain of f and b is the codomain of f

• Identify Relationship
‒ida = 1a: a    a

• Associativity
‒ f ͦ (g ͦ h) = (f ͦ g) ͦ  h 

• Composition
‒Composition can be performed by various mathematical operations (i.e., addition, 

subtraction, multiplication, division)

‒a ՜
𝑓

b ՜
𝑔

c = a 
𝑓∘𝑔

c 
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Mathematical Category Types

 Category Types
• Category of Sets

• Category of Arrows (objects are implied)

• Category of Groups

• Category of Categories

• Universal Category

• Category of Small Categories

• Abelian Categories

 Objects within a category can be
• Objects (i.e., individual parts or components)

• Sets (i.e., sets of individual parts)

• Groups

• Smaller Categories (i.e., stages, subsystems, assemblies)

 Directed Graphs
• Directed graphs, when they meet the property conditions, are a form a 

mathematical category
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Mathematical Category Transformations

 Functors

• Mathematical morphisms between categories, F: A ՜
𝐹

C
• Creates a mapping from one category to another
• Includes composition in the mapping

 Natural Transformations
• Transformation is the same among all objects
• Is commutative
• If invertible, then is a ‘natural equivalence’ or ‘isomorphism’

 Isomorphism
• If the relationships (arrows) are invertible between two objects, then the objects 
are isomorphic, 𝑎 ≅ 𝑏

‒a ՜
𝑓

b ՜
𝑔

a, f = g’, g = f’

• Categories can be isomorphic, A≅ 𝐵
‒The objects can be different, but the relationships between the objects of the two 

categories are preserved 
• i.e., different copies of the same system are isomorphic
• Or, two different designs of the same system type may be isomorphic (e.g., different automobile 

makes with similar models)
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Mathematical Category Transformations

 Co-cones/Co-limits
• Co-cone 

‒A common codomain for Functors operating on Category C

• Co-limit
‒The limit of the Co-cone defining the conditions where all Functors and mappings to 

objects of the Category, C, are included
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https://www.nasa.gov/content/goddard/nasa-engineer-set-to-complete-first-3-d-printed-space-cameras/



Systems Engineering Application

 Black Box
• Since a Category may contain smaller Categories, then an engineering ‘black 
box’ is a Category treated as an object within a larger Category

 System Completeness
• The mathematical structure of the system Category provides a mechanism to 
construct a completeness proof for a given system

 System Specification
• The System objects and relationships form the basis of the system requirements
• The Category must contain the correct and complete objects and relationships

‒Variations result in a system different than intended
 System Assembly

• Co-cones and co-limits define the assembly operations needed to construct the 
system Category

• The Functors map parts from the parts category(s) to the system category
‒The parts may map to sub-categories (i.e., assemblies and subsystems) within the 

system category
• The limits define what must be included at each step of the assembly in order to 
be complete
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Summary

 System Engineering Postulates provides a mathematical definition of a 
system
• Postulate 2: The Systems Engineering domain consists of subsystems, their interactions 

among themselves, and their interactions with the system environment

 System are Mathematical Categories
• Mathematical Category Theory provides the mathematical structure to fully represent a 

system: all of its components and all of its physical and logical relationships

 Mathematical Category Theory provides insight into systems
• Category Types
• Categories as objects within larger Categories
• Directed Graph Representations
• Functors
• Natural Transformations
• Isomorphism
• Co-cones and co-limits

 Mathematical Category Theory supports representations of systems
• Engineering Black Box
• Parts/components, assemblies, subsystems as smaller categories within the system 

category
• System Completeness
• System Specification
• System Assembly
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